Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Front Endocrinol (Lausanne) ; 13: 951388, 2022.
Article in English | MEDLINE | ID: covidwho-2286232

ABSTRACT

Background and objective: COVID-19 infection in pregnancy significantly increases risks of adverse pregnancy outcomes. However, little is known how the innate immunity at the placental maternal-fetal interface responds to COVID-19 infection. Type I IFN cytokines are recognized as a key component of the innate immune response against viral infection. In this study, we specifically evaluated expression of IFN antiviral signaling molecules in placentas from women infected with COVID-19 during pregnancy. Methods: Expression of IFN activation signaling pathway molecules, including cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), interferon regulatory factor 3 (IRF3), Toll-like receptor 7 (TLR7), mitochondrial antiviral-signaling protein (MAVS), and IFNß were determined in formalin-fixed paraffin embedded (FFPE) placental tissue sections (villous and fetal membrane) by immunostaining. A total of 20 placentas were examined, 12 from COVID-19 patients and 8 from non-COVID-19 controls. Patient demographics, clinical data, and placental pathology report were acquired via EPIC medical record review. Results: Except BMI and placental weight, there was no statistical difference between COVID and non-COVID groups in maternal age, gestational age at delivery, gravity/parity, delivery mode, and newborn gender and weight. In COVID-exposed group, the main pathological characteristics in the placental disc are maternal and fetal vascular malperfusion and chronic inflammation. Compared to non-COVID controls, expression of IFN activation pathway molecules were all upregulated with distinct cell-type specific distribution in COVID-exposed placentas: STING in villous and decidual stromal cells; IRF3 in cytotrophoblasts (CTs) and extra-villous trophoblasts (EVTs); and TLR7 and MAVS in syncytiotrophoblasts (STs), CTs, and EVTs. Upregulation of STING, MAVS and TLR7 was also seen in fetal endothelial cells. Conclusions: STING, IRF3, TLR7, and MAVS are key viral sensing molecules that regulate type I IFN production. Type I IFNs are potent antiviral cytokines to impair and eradicate viral replication in infected cells. The finding of cell-type specific distribution and activation of these innate antiviral molecules at the placental maternal-fetal interface provide plausible evidence that type I IFN pathway molecules may play critical roles against SARS-CoV-2 infection in the placenta. Our findings also suggest that placental maternal-fetal interface has a well-defined antiviral defense system to protect the developing fetus from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Immunity, Innate , Interferon Type I , Placenta , Female , Humans , Infant, Newborn , Pregnancy , Antiviral Agents , COVID-19/immunology , Cytokines , Endothelial Cells , Placenta/immunology , SARS-CoV-2 , Toll-Like Receptor 7 , Interferon Type I/immunology
2.
Mol Immunol ; 153: 212-225, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165717

ABSTRACT

The last two decades have seen the emergence of three highly pathogenic coronaviruses with zoonotic origins, which prompted immediate attention to the underlying cause and prevention of future outbreaks. Intensification of camel husbandry in the Middle East has resulted in increased human-camel interactions, which has led to the spread of potentially zoonotic viruses with human spillover risks like MERS-coronavirus, camelpox virus, etc. Type-I interferons function as the first line of defense against invading viruses and are pivotal for limiting viral replication and immune-mediated pathologies. Seven novel dromedary camel interferon delta genes were identified and cloned. Functional characterization of this novel class of IFNs from the mammalian suborder tylopoda is reported for the first time. The camel interferon-delta proteins resemble the reported mammalian counterparts in sequence similarity, conservation of cysteines, and phylogenetic proximity. Prokaryotically expressed recombinant camel interferon-δ1 induced IFN-stimulated gene expression and also exerted antiviral action against camelpox virus, an endemic zoonotic virus. The pre-treatment of camel kidney cells with recombinant camel IFN-δ1 increased cell survival and reduced camelpox virus in a dose-dependent manner. The identification of novel IFNs from species with zoonotic spillover risk such as camels, and evaluating their antiviral effects in-vitro will play a key role in improving immunotherapies against viruses and expanding the arsenal to combat emerging zoonotic pathogens.


Subject(s)
Camelus , Interferon Type I , Animals , Camelus/genetics , Camelus/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny
3.
J Virol ; 96(22): e0155522, 2022 11 23.
Article in English | MEDLINE | ID: covidwho-2097923

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , Heterogeneous-Nuclear Ribonucleoprotein K , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Antiviral Agents , Chlorocebus aethiops , Coronavirus Infections/veterinary , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Interferons , Myeloid Differentiation Factor 88 , Nucleocapsid Proteins/physiology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Ubiquitin-Protein Ligases , Vero Cells , Interferon Type I/immunology
4.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2066136

ABSTRACT

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Interferon Type I , Interferon-Induced Helicase, IFIH1 , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19 , Coronavirus Infections/immunology , Humans , Infectious bronchitis virus/metabolism , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitinated Proteins , Viral Nonstructural Proteins/metabolism
5.
Cells ; 11(18)2022 09 17.
Article in English | MEDLINE | ID: covidwho-2043595

ABSTRACT

Airway epithelial cells represent the main target of SARS-CoV-2 replication but several pieces of evidence suggest that endothelial cells (ECs), lining pulmonary blood vessels, are key players in lung injury in COVID-19 patients. Although in vivo evidence of SARS-CoV-2 affecting the vascular endothelium exists, in vitro data are limited. In the present study, we set up an organotypic model to dissect the crosstalk between airway epithelium and pulmonary endothelial cells during SARS-CoV-2 infection. We showed that SARS-CoV-2 infected airway epithelium triggers the induction of endothelial adhesion molecules in ECs, suggesting a bystander effect of dangerous soluble signals from the infected epithelium. The endothelial activation was correlated with inflammatory cytokines (IL-1ß, IL-6, IL-8) and with the viral replication in the airway epithelium. Interestingly, SARS-CoV-2 infection determined a modulation of endothelial p21, which could be partially reversed by inhibiting IFN-ß production from ECs when co-cultured with HAE. Altogether, we demonstrated that SARS-CoV-2 infected epithelium triggers activation/senescence processes in ECs involving type I IFN-ß production, suggesting possible antiviral/damage mechanisms occurring in the endothelium.


Subject(s)
COVID-19 , Endothelial Cells , Interferon Type I , COVID-19/immunology , Cellular Senescence , Endothelial Cells/immunology , Epithelium , Humans , Interferon Type I/immunology , Interleukin-6 , Interleukin-8 , Lung , SARS-CoV-2
6.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: covidwho-2037304

ABSTRACT

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Subject(s)
Autoantibodies , Influenza, Human , Interferon Type I , Pneumonia , COVID-19/complications , COVID-19/immunology , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Pneumonia/complications , Pneumonia/immunology , Yellow Fever Vaccine/adverse effects
7.
Nature ; 609(7928): 754-760, 2022 09.
Article in English | MEDLINE | ID: covidwho-1984401

ABSTRACT

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Subject(s)
COVID-19 , GTPase-Activating Proteins , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors , Host Microbial Interactions , SARS-CoV-2 , Alleles , Animals , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Japan , Lung/pathology , Macrophages , Mesocricetus , Middle Aged , Pneumonia/complications , Pyrazoles/pharmacology , RNA-Seq , SARS-CoV-2/pathogenicity , Viral Load , Weight Loss
8.
mSphere ; 7(4): e0021122, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938010

ABSTRACT

The innate interferon (IFN) response constitutes the first line of host defense against viral infections. It has been shown that IFN-I/III treatment could effectively contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in vitro. However, how SARS-CoV-2 survives through the innate antiviral mechanism remains to be explored. Our study uncovered that human angiotensin-converting enzyme 2 (ACE2), identified as a primary receptor for SARS-CoV-2 entry, can disturb the IFN-I signaling pathway during SARS-CoV-2 infection in human lung cells. We identified that ACE2 was significantly upregulated by SARS-CoV-2 and Sendai virus (SeV) infection, and exogenous expression of ACE2 suppressed IFN-I production in a dose-dependent manner. Mechanistically, ACE2 disrupted poly (I:C)-mediated inhibition of SARS-CoV2 replication by antagonizing IFN-I production by blocking IRF3 phosphorylation and nuclear translocation. Moreover, ACE2 quenched the IFN-mediated antiviral immune response by degrading endogenous STAT2 protein, inhibiting STAT2 phosphorylation and nuclear translocation. Interestingly, IFN-inducible short ACE2 (dACE2 or MIRb-ACE2) can also be induced by virus infection and inhibits the IFN signaling. Thus, our findings provide mechanistic insight into the distinctive role of ACE2 in promoting SARS-CoV-2 infection and enlighten us that the development of interventional strategies might be further optimized to interrupt ACE2-mediated suppression of IFN-I and its signaling pathway. IMPORTANCE Efficient antiviral immune responses against SARS-CoV-2 infection play a key role in controlling the coronavirus diseases 2019 (COVID-19) caused by this virus. Although SARS-CoV-2 has developed strategies to counteract the IFN-I signaling through the virus-derived proteins, our knowledge of how SARS-CoV-2 survives through the innate antiviral mechanism remains poor. We herein discovered the distinctive role of ACE2 as a restraining factor of the IFN-I signaling in facilitating SARS-CoV-2 infection in human lung cells. Both full-length ACE2 and truncated dACE2 can antagonize IFN-mediated antiviral response. These findings are key to understanding the counteraction between SARS-CoV-2 pathogenicity and the host antiviral defenses.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Interferon Type I , Signal Transduction , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Humans , Interferon Type I/immunology , RNA, Viral , SARS-CoV-2
9.
J Mol Biol ; 434(6): 167438, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1851578

ABSTRACT

Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.


Subject(s)
Antiviral Agents , Coronavirus Infections , Coronavirus , Drug Development , Immune Evasion , Interferon Type I , Vaccine Development , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Coronavirus/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunity, Innate , Interferon Type I/immunology , Interferon Type I/therapeutic use , SARS-CoV-2/immunology
10.
Nutrients ; 14(7)2022 Mar 26.
Article in English | MEDLINE | ID: covidwho-1834851

ABSTRACT

Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the "Suppressor Of Cytokine Signaling 1 and 3" (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the "typical western" conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.


Subject(s)
COVID-19 , Interferon Type I , Leptin , Obesity , COVID-19/complications , COVID-19/immunology , Humans , Inflammation , Interferon Type I/immunology , Obesity/complications , SARS-CoV-2
12.
Cell Rep ; 38(10): 110434, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1729611

ABSTRACT

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Subject(s)
DEAD Box Protein 58 , Interferon Type I , RNA Helicases , RNA, Viral , Receptors, Immunologic , Zika Virus Infection , Zika Virus , COVID-19 , DEAD Box Protein 58/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , RNA Helicases/immunology , Receptors, Immunologic/immunology , SARS-CoV-2 , Tripartite Motif Proteins , Zika Virus/genetics , Zika Virus Infection/immunology
13.
Science ; 374(6571): 1127-1133, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1723460

ABSTRACT

Humans differ in their susceptibility to infectious disease, partly owing to variation in the immune response after infection. We used single-cell RNA sequencing to quantify variation in the response to influenza infection in peripheral blood mononuclear cells from European- and African-ancestry males. Genetic ancestry effects are common but highly cell type specific. Higher levels of European ancestry are associated with increased type I interferon pathway activity in early infection, which predicts reduced viral titers at later time points. Substantial population-associated variation is explained by cis-expression quantitative trait loci that are differentiated by genetic ancestry. Furthermore, genetic ancestry­associated genes are enriched among genes correlated with COVID-19 disease severity, suggesting that the early immune response contributes to ancestry-associated differences for multiple viral infection outcomes.


Subject(s)
Black or African American/genetics , COVID-19/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Leukocytes, Mononuclear/virology , White People/genetics , Adult , Aged , COVID-19/immunology , COVID-19/physiopathology , Disease Susceptibility , Gene Expression Regulation , Genetic Variation , Humans , Influenza A Virus, H1N1 Subtype/physiology , Interferon Type I/immunology , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Quantitative Trait Loci , Severity of Illness Index , Single-Cell Analysis , Transcription, Genetic , Viral Load , Young Adult
14.
EMBO J ; 41(10): e109622, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1700141

ABSTRACT

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model, we further demonstrate that pDCs, while not supporting SARS-CoV-2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways, we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL-6 response, suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.


Subject(s)
COVID-19 , Dendritic Cells , Toll-Like Receptor 2 , Toll-Like Receptor 7 , COVID-19/immunology , COVID-19/pathology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Humans , Interferon Type I/immunology , Interferon-alpha/immunology , Interleukin-6/immunology , Neuropilin-1/immunology , SARS-CoV-2 , Toll-Like Receptor 2/immunology , Toll-Like Receptor 7/immunology
15.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1687060

ABSTRACT

Mathematical modelling of infection processes in cells is of fundamental interest. It helps to understand the SARS-CoV-2 dynamics in detail and can be useful to define the vulnerability steps targeted by antiviral treatments. We previously developed a deterministic mathematical model of the SARS-CoV-2 life cycle in a single cell. Despite answering many questions, it certainly cannot accurately account for the stochastic nature of an infection process caused by natural fluctuation in reaction kinetics and the small abundance of participating components in a single cell. In the present work, this deterministic model is transformed into a stochastic one based on a Markov Chain Monte Carlo (MCMC) method. This model is employed to compute statistical characteristics of the SARS-CoV-2 life cycle including the probability for a non-degenerate infection process. Varying parameters of the model enables us to unveil the inhibitory effects of IFN and the effects of the ACE2 binding affinity. The simulation results show that the type I IFN response has a very strong effect on inhibition of the total viral progeny whereas the effect of a 10-fold variation of the binding rate to ACE2 turns out to be negligible for the probability of infection and viral production.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Interferon Type I/immunology , Models, Theoretical , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/immunology , Computer Simulation , Humans , Kinetics , Life Cycle Stages , Markov Chains , Protein Binding , SARS-CoV-2/growth & development , Stochastic Processes
16.
Nature ; 603(7902): 587-598, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655590

ABSTRACT

SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNß and/or IFNω, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/immunology , Age Distribution , Autoantibodies/immunology , COVID-19/mortality , COVID-19/pathology , Critical Illness , Dendritic Cells/immunology , Genome-Wide Association Study , Humans , Interferon Type I/genetics , Sex Distribution , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics
17.
Curr Opin Immunol ; 74: 172-182, 2022 02.
Article in English | MEDLINE | ID: covidwho-1650997

ABSTRACT

Type I interferons (IFNs) have broad and potent antiviral activity. We review the interplay between type I IFNs and SARS-CoV-2. Human cells infected with SARS-CoV-2 in vitro produce low levels of type I IFNs, and SARS-CoV-2 proteins can inhibit various steps in type I IFN production and response. Exogenous type I IFNs inhibit viral growth in vitro. In various animal species infected in vivo, type I IFN deficiencies underlie higher viral loads and more severe disease than in control animals. The early administration of exogenous type I IFNs improves infection control. In humans, inborn errors of, and auto-antibodies against type I IFNs underlie life-threatening COVID-19 pneumonia. Overall, type I IFNs are essential for host defense against SARS-CoV-2 in individual cells and whole organisms.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Animals , Humans
18.
Nature ; 603(7899): 145-151, 2022 03.
Article in English | MEDLINE | ID: covidwho-1631700

ABSTRACT

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Interferon Type I/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SARS-CoV-2/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , DNA, Mitochondrial/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Macrophages/immunology , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/virology , SARS-CoV-2/pathogenicity , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
19.
Viruses ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1580419

ABSTRACT

A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.


Subject(s)
Antibodies, Viral/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Viruses/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , COVID-19/immunology , COVID-19 Serological Testing , Cross Reactions , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Protein Array Analysis , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , Viruses/classification
20.
Nat Commun ; 12(1): 7092, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1561304

ABSTRACT

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Subject(s)
Epithelial Cells/virology , Interferon Type I/immunology , Interferons/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/immunology , Humans , Immunity, Innate , Kinetics , Nasal Mucosa/cytology , Nasal Mucosa/immunology , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Viral Tropism , Virus Replication/drug effects , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL